Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(55): 117225-117237, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864697

RESUMO

Carbon dioxide mineral carbonisation is a means to achieve permanent carbon dioxide storage, this paper to solid waste materials as the main raw material to prepare fly ash-based carbon dioxide storage materials. Through the design of carbon dioxide adsorption experimental setup to study the main factors affecting the adsorption capacity of the fly ash-based storage materials, the experimental results show that, the fly ash mass fraction decreased from 90 to 10%, the water-cement ratio increased from 0.4 to 0.8 when the CO2 adsorption of fly ash-based materials increased by 82% and 30%, respectively. The effect of strong alkali on CO2 adsorption capacity was also investigated in this paper, and the results showed that the CO2 adsorption of the fly ash-based material sample with 10 ml NaOH added increased by 197% compared with that of the sample with 5 ml NaOH added, whereas the adsorption amount was reduced by 85% when 25 ml NaOH was added instead, which was attributed to the accelerated hydration process of the material due to the excessive alkalinity that consumed the calcium and magnesium ions in the material, and at the same time the production of hydration products hindered the transport of CO2 within the material, which led to a decrease in CO2 adsorption.


Assuntos
Dióxido de Carbono , Cinza de Carvão , Adsorção , Sequestro de Carbono , Hidróxido de Sódio
2.
Viruses ; 14(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35891512

RESUMO

A new partititvirus isolated from a Trichoderma harzianum strain (T673), collected in China, was characterized and annotated as Trichoderma harzianum partitivirus 2 (ThPV2). The genome of ThPV2 consists of a 1693 bp dsRNA1 encoding a putative RNA-dependent RNA polymerase (RdRp) and a 1458 bp dsRNA2 encoding a hypothetical protein. In comparative studies employing the ThPV2-infected strain (T673) and a strain cured by ribavirin treatment (virus-free strain T673-F), we investigated biological effects of ThPV2 infection. While the growth rate of the virus-infected fungus differed little from that of the cured variant, higher mycelial density, conidiospore, and chlamydospore production were observed in the virus-infected strain T673. Furthermore, both the ThPV2-infected and the cured strain showed growth- and development-promoting activities in cucumber plants. In vitro confrontation tests showed that strains T673 and T673-F inhibited several important fungal pathogens and an oomycete pathogen in a comparable manner. Interestingly, in experiments with cucumber seeds inoculated with Fusarium oxysporum f. sp. cucumerinum, the ThPV2-infected strain T673 showed moderately but statistically significantly improved biocontrol activity when compared with strain T673-F. Our data broaden the spectrum of known mycoviruses and provide relevant information for the development of mycoviruses for agronomic applications.


Assuntos
Micovírus , Hypocreales , Trichoderma , Micovírus/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Esporos Fúngicos
3.
Environ Sci Pollut Res Int ; 29(31): 47095-47108, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35175523

RESUMO

To protect the environment and reduce the occurrence of coal mine fire, foam injection in goafs is an effective measure for preventing and extinguishing mine fires. The flow characteristics of foams injected into goafs have a significant impact on the prevention and extinguishment of such fires. To study the flow characteristics of foam injected into a goaf, we first independently constructed a set of experimental platforms for the visualization of goafs. Next, we performed physical experiments on foam injection using similarity theory. Flow characteristics were simulated under different foam concentrations, flow rates, and goaf porosities. The exponential function was found to provide a good fit to the trajectory of the foam's stacking edge in the goaf. According to the foam injection volume, the trend of the fitting equation parameter a could be divided into two stages. The first stage was the rapidly decreasing stage, and the second stage was the stable stage. It was inferred that the stacking height and diffusion radius of the foam under different conditions were related to the speed of liquid film drainage. The results of this study can provide a valuable reference for the use of fire prevention and extinguishment technology in the goaf.


Assuntos
Minas de Carvão , Incêndios , Carvão Mineral , Minas de Carvão/métodos , Incêndios/prevenção & controle
4.
Front Microbiol ; 12: 654855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168625

RESUMO

Trichoderma spp. are widely used biocontrol agents which are antagonistic to a variety of plant pathogens. Chlamydospores are a type of propagules produced by many fungi that have thick walls and are highly resistant to adverse environmental conditions. Chlamydospore preparations of Trichoderma spp. can withstand various storage conditions, have a longer shelf life than conidial preparations and have better application potential. However, large-scale production of chlamydospores has proven difficult. To understand the molecular mechanisms governing chlamydospore formation (CF) in Trichoderma fungi, we performed a comprehensive analysis of transcriptome dynamics during CF across 8 different developmental time points, which were divided into 4 stages according to PCA analysis: the mycelium growth stage (S1), early and middle stage of CF (S2), flourishing stage of CF (S3), and late stage of CF and mycelia initial autolysis (S4). 2864, 3206, and 3630 DEGs were screened from S2 vs S1, S3 vs S2, and S4 vs S3, respectively. We then identified the pathways and genes that play important roles in each stage of CF by GO, KEGG, STC and WGCNA analysis. The results showed that DEGs in the S2 vs S1 were mainly enriched in organonitrogen compound metabolism, those in S3 vs S2 were mainly involved in secondary metabolite, cell cycle, and N-glycan biosynthesis, and DEGs in S4 vs S3 were mainly involved in lipid, glycogen, and chitin metabolic processes. We speculated that mycelial assimilation and absorption of exogenous nitrogen in the early growth stage (S1), resulted in subsequent nitrogen deficiency (S2). At the same time, secondary metabolites and active oxygen free radicals released during mycelial growth produced an adverse growth environment. The resulting nitrogen-deficient and toxin enriched medium may stimulate cell differentiation by initiating cell cycle regulation to induce morphological transformation of mycelia into chlamydospores. High expression of genes relating to glycogen, lipid, mannan, and chitin synthetic metabolic pathways during the flourishing (S3) and late stages (S4) of CF may be conducive to energy storage and cell wall construction in chlamydospores. For further verifying the functions of the amino sugar and nucleotide sugar metabolism (tre00520) pathway in the CF of T. virens GV29-8 strain, the chitin synthase gene (TRIVIDRAFT_90152), one key gene of the pathway, was deleted and resulted in the dysplasia of mycelia and an incapability to form normal chlamydospores, which illustrated the pathway affecting the CF of T. virens GV29-8 strain. Our results provide a new perspective for understanding the genetics of biochemical pathways involved in CF of Trichoderma spp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...